FR M MOLECULE TO PATIENT

A Semi-Mechanistic Population Pharmacokinetic-Pharmacodynamic Model for Tenofovir in Rectal Mucosal Mononuclear Cells of Healthy Volunteers

Priya Jayachandran¹, Maria Garcia-Cremades¹, Peter Anton³, Craig Hendrix², Rada Savic¹ ¹Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA, ²Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA, ³ University of California Los Angeles, Los Angeles, CA, USA

Priya Jayachandran, PharmD, MSE

NIH T32 Clinical Pharmacology Fellow UCSF • Principle Investigator: *Rada Savic, PhD* 03.16.19 • ASCPT 2019 Annual Meeting • Washington, DC

HIV Pre-Exposure Prophylaxis: Topical Product Development

AIM

Define a tissue-specific prophylactic target tenofovir concentration above which HIV infection is suppressed using pharmacokinetic-pharmacodynamic modeling

The RMP-02/MTN-006 Study¹: Phase I Pharmacokinetic Study in HIV-1 Seronegative Adults

Sc	Screen Enroll Randomize				Single Oral 300 mg TDF				Single Rectal				Multiple Rectal				
VISIT	1	2		PRE 0 hr	[3] POST 0.5 hr 2 4 hr	4 24 hr	5 A : Day 1 B : Day 4	6 A: Day 7 B: Day 10	PRE 0 hr	[7] POST 0.5 hr 2, 4 hr	8 24 hr	9 A : Day 1 B : Day 4	10 A: Day 7 B: Day 10	[11] 0 hr	[PRE 0 hr	12] POST 0.5 hr 2.4 hr	13 24 hr
Plasma Matrices: Plasma TFV concentration PBMC TFVdp concentratio	'n			√ √ √		\checkmark	\checkmark	√ √	√ √ √	\ \ \	\checkmark	\checkmark	√ √	√ √	√ √	, , , ,	√ √
Tissue TFV concentration Tissue TFVdp concentration MMC TFVdp concentration	on n	\checkmark \checkmark			\checkmark \checkmark		\checkmark \checkmark	√ √ √		\checkmark \checkmark		\checkmark \checkmark	√ √ √			\checkmark \checkmark	
HIV infectability study: p24 explant tissue assay		\checkmark			\checkmark		\checkmark	1		\checkmark		\checkmark	~			\checkmark	

Dosing events: [x]

TDF = *tenofovir disoproxil fumarate; TFV* = *tenofovir; TFVdp* = *tenofovir diphosphate* ¹Anton PA, et al. *AIDS Res Hum Retroviruses.* 2012;28(11):1412-21.

Pharmacokinetic Profiles of TFV/TFVdp Drug in Each Matrix

Plasma Matrices

Rectal Matrices

LLOQ = lower limit of quantification; BLQ = below limit of quantification Concentrations deemed BLQ not included

Pharmacodynamic Profiles of Cumulative p24 Antigen Expression Levels from ex vivo Explant Assay

log10[cumulative p24 antigen] (pg/mL) 10000 MMC [TFVdp] Cumulative p24 antigen low (< 160 fmol/million cells) expression decreases with high (> 160 fmol/million cells) increasing TFVdp drug concentration 100 0 24 96 168 264 336 Time (hours)

Median (solid, black = baseline); individual (dotted); cumulative p24 antigen level = 500 pg/mL (dashed) Concentrations deemed BLQ (10 pg/mL) included

Key Considerations in the Development of the in vivo-ex vivo Pharmacokinetic-Pharmacodynamic Model

A significant <u>linear</u> PKPD relationship was observed between p24 antigen expression level and TFVdp concentration in MMCs.

The magnitude of the slope is biased without consideration for the rate of drug degradation.

<u>Assumption</u>: constant degradation rate² ($k_{deg} = 0.0018 h^{-1}$)

²Agrahari, Vivek et al. Drug testing and analysis 7.3 (2015): 207-213.

Model Summary and Visual Predictive Checks

Model Description (Parameter	ļ	Pharmacokinetic Drive	Inter-individual Variability, %CV (RSE, %)				
Model Description/Parameter	OFV/Signific	ance/Population Estim					
	CD4-	CD_4^+	TOTAL	CD₄⁻	CD_4^+	TOTAL	
No treatment effect	8201	8088	8073	-	-	-	
Treatment effect	Not significant	Not significant	Not significant	-	-	-	
PKPD effect	8168 (dOFV = -33)	8105 (dOFV = +17)	8040 (dOFV = -33)	-	-	-	
Drug degradation effect	8161 (dOFV = -40)	8097 (dOFV = +9)	8032 (dOFV = -41)	-	-	-	
Slope [(pg/mL)/(fmol/million cells)]	4.20x10 ⁻⁴ (9)	8.0x10 ⁻⁵ (44)	1.10x10 ⁻⁴ (11)	-	2.93 (29)	-	
Proportional error [%CV]	86.9 (5)	85.7 (6)	87.6 (6)				
Additive error [pg/mL]	3.53 (10)	3.60 (10)	3.61 (11)				

A Semi-mechanistic Population PKPD Model for Tenofovir in Rectal Mucosal Mononuclear Cells of Healthy Volunteers • © Priya Jayachandran, 2019

What target MMC TFVdp concentration will lead to full viral suppression in the ex vivo assay?

[MMC TFVdp] > 5500 fmol/million cells

Cumulative p24 antigen level = 500 pg/mL (dashed)

Conclusions

We have established a **dose-concentration-response effect** using **explant tissue** to describe the effect of single (oral and rectal) and multiple (rectal) dose administrations of tenofovir to suppress p24 antigen expression in healthy volunteers.

Population PK Model

- TFV and TFVdp PK in plasma and rectal matrices were successfully characterized using a multi-compartmental PK model.
- Accumulation of TFVdp in MMCs appears to be higher following rectal compared to oral administration.

Population PKPD Model

- The PKPD relationship appears to be independent of cell type.
- Drug degradation effect in the *ex vivo* assay must be considered to derive unbiased parameter estimates and to maximize the utility of the explant assay.

Tissue-Specific Prophylactic Target TFVdp Concentration

• MMC TFVdp concentrations > 5500 fmol/million cells are desired for full viral suppression (p24 antigen expression profile).